
Active Learning with Irrelevant Examples

Dominic Mazzoni, Kiri L. Wagstaff, and Michael C. Burl

Jet Propulsion Laboratory, California Institute of Technology,
Mail Stop 126-347, 4800 Oak Grove Drive, Pasadena CA 91109, USA,

kiri.wagstaff@jpl.nasa.gov

Abstract. Active learning algorithms attempt to accelerate the learn-
ing process by requesting labels for the most informative items first. In
real-world problems, however, there may exist unlabeled items that are
irrelevant to the user’s classification goals. Queries about these points
slow down learning because they provide no information about the prob-
lem of interest. We have observed that when irrelevant items are present,
active learning can perform worse than random selection, requiring more
time (queries) to achieve the same level of accuracy. Therefore, we pro-
pose a novel approach, Relevance Bias, in which the active learner
combines its default selection heuristic with the output of a simultane-
ously trained relevance classifier to favor items that are likely to be both
informative and relevant. In our experiments on a real-world problem
and two benchmark datasets, the Relevance Bias approach significantly
improves the learning rate of three different active learning approaches.

1 Introduction

For many classification problems, class labels must be generated by a domain
expert and are therefore expensive to acquire. Active learning [1] attempts to
reduce this burden by incrementally selecting the most useful items for labeling.
Current active learning approaches assume that the expert can provide a valid
label for any item in the data set. In this work, we investigate what happens when
this assumption is violated due to the presence of irrelevant examples (items
that cannot be assigned to any of the valid classes). This may occur because the
example belongs to an irrelevant class or because it is ambiguous. For example, in
the realm of handwritten digit recognition, irrelevant examples include scanning
errors, such as smudges or non-digit characters, or truly ambiguous examples,
such as a ‘7’ with a very short upper bar that therefore looks like a ‘1’. Existing
active learning methods have no mechanism for handling irrelevant examples.

An obvious strategy for dealing with irrelevant items is to filter the data
before training the classifier. While this is a reasonable solution for a benchmark
data set, it is unrealistic as a general solution, especially with very large data
sets. The process of filtering is as labor-intensive as labeling the entire data
set. Since the purpose of active learning is to achieve high performance without
requiring that every item be labeled, it is necessary for active learners to be able
to work with the unfiltered data.



This paper offers two main contributions. First, we propose an active learning
framework where “irrelevant” is a valid response from the expert labeler (Sec-
tion 2). In this framework, we demonstrate that several popular active learning
methods are sufficiently sensitive to irrelevant examples that in some cases they
perform worse (that is, learn more slowly) than a random selection (passive)
strategy. We also discuss why placing the irrelevant items into a new class and
using a multi-class active learning method is ineffective. We then present our
second contribution, Relevance Bias, a method by which any active learning
method can learn to avoid querying irrelevant items (Section 3). Finally, we
present experimental results in Section 4 that demonstrate the improvements
achieved by active learners with a Relevance Bias and conclude in Section 5.

2 Active Learning and Irrelevant Items

We focus on pool-based active learning, where the learner has access to a (fixed)
pool of items for which it can request labels. We assume the existence of a pool
U = {xi} of unlabeled items. Each xi is a d-dimensional vector in Euclidean
space, and the items are assumed to be i.i.d. according to an unknown fixed
distribution P (x). For simplicity, we will discuss active learning in the context
of binary classification. In traditional active learning, there exists a classification
label yi ∈ {±1} for each xi that is available, upon request, from the expert
labeler. We refer to the expert’s labeling of x as f(x). Let L be the set of items
for which the learner has already requested labels. In each round, the active
learner selects an unlabeled item x from U and receives its label, y = f(x).
The learner then updates its classifier based on L ∪ {(x, y)}. In this section, we
describe several active learning methods and then discuss how the active learning
problem changes when irrelevant items exist.

2.1 Active Learning Algorithms

Although active learning is not restricted to any single inductive learning tech-
nique, much of the recent work in this area has focused on active learning for
support vector machines (SVMs) [2] due to their strong performance on a vari-
ety of problems. An SVM is a binary classifier that constructs a hyperplane in
d dimensions to separate the two classes. In particular, it seeks the hyperplane
that will maximize the margin, or distance between each class and the hyper-
plane. For classes that are not linearly separable, the SVM implicitly maps each
point into a higher-dimensional space via a kernel function, which often improves
separability. All active learning methods seek to select the item x which, when
labeled, provides the greatest accuracy improvement. In this work, we consider
four data selection methods: three active learning methods and passive (random)
selection.

1. Simple Margin (“Simple”) [3]: Rank each example x ∈ U by its distance
from the hyperplane and then choose item x with the smallest distance.



2. MaxMin Margin [3]: Empirically test which item x will be most effective,
in terms of maximizing the separation between the two classes (and therefore
minimizing the size of the version space), regardless of which label it receives.

3. Diverse [4]: Choose item x that simultaneously minimizes distance to the
hyperplane and maximizes the diversity of the new training set, L∪{(x, y)}.

4. Random: Choose item x randomly.

Probabilistic Active Learning. Because each of the active learning algorithms
described above proceeds heuristically, it will not always be advantageous to
select the top-ranked query. Therefore, for each algorithm, we instead used a
variant that sorts all of the examples in the pool according to the active learning
algorithm’s heuristic, and then chooses an item at random from the top p% of
the pool instead of choosing the top-ranked example. In our experiments, with
p = 10%, we determined that these probabilistic active learners outperformed
the “strict” algorithms by 1–6% on all three data sets and never resulted in
decreased performance. Therefore, in the remainder of the paper we will report
results using probabilistic active learning.

2.2 A Framework for Active Learning with Irrelevant Items

Applying active learners when irrelevant items are present requires a modified
learning framework. We model the new expert labeler as a function h that maps
items to three possible values, yi ∈ {−1, 0,+1}. A value of 0 indicates that the
label is irrelevant to the learning task at hand. Again, on each round, the active
learner applies a selection function to choose an unlabeled item x from U . The
learner proceeds normally unless h(x) = 0, in which case it acquires no new
information and must wait until the following round to make a new request. For
some problems, waiting until the next round can be extremely expensive. For
example, we have investigated using active learning to select initial conditions
for an asteroid collision simulator [5]. Determining the “label” (outcome) for
each set of initial conditions requires running a numerical simulation algorithm
for days, and a significant amount of time is lost due to an irrelevant query.

Using this framework, we are able to study each active learning method’s re-
sponse to the presence of irrelevant items. The ideal active learner would avoid
the irrelevant items completely, since they cannot help improve the margin or
reduce the size of the feature space. However, if the active learner’s heuristic for
item selection coincides with the kind of irrelevant examples that are present,
the learner may devote the majority of its queries to the irrelevant items. In
Section 4, we will show experimentally that this problem is significant enough
that it can cause active learning methods to perform worse than random selec-
tion. In keeping with the classification goals, we evaluate performance on the
relevant items only.

An intuitive approach to dealing with irrelevant items would be to use a
multi-class active learner and provide it with three classes: the positive, nega-
tive, and irrelevant items. However, this approach requires that the active learner



select-rb(active learner A, relevance classifier C∗)

1. Rank all items x in the unlabeled pool U using A.
2. Normalize all A(x) scores into the range [0, 1].
3. Calculate P (relevant|x) using C∗.
4. Select x such that A(x) × P (relevant|x) is maximized, and request y = h(x),
the label for x.
5. If y = 0 (irrelevant), add x to R; otherwise, add x to L. Re-train C∗.

Fig. 1. Pseudo-code for adding a Relevance Bias to active learner A.

devote resources (queries) to accurately modeling the irrelevant class, which de-
tracts from the real classification goal. In the next section, we introduce our
approach, which cleanly separates the goals of (1) high performance on the rel-
evant classes and (2) minimizing the number of irrelevant queries.

3 Solution: Active Learning Relevance Bias

We propose an active learner that, in addition to selecting the most informative
items for labeling, also learns to separate relevant from irrelevant items. This
approach can be adopted by any existing active learning method. The new active
learner collects irrelevant items x in a set R of rejected queries, then trains an
additional classifier to distinguish between the set of examples in L (the labeled
set, both positive and negative examples) and the examples in R. The active
learner uses this relevance classifier, C∗, to influence its decision about which
example should be chosen next. Classifier C∗ is unlikely to be 100% accurate,
especially in early rounds, so relying on it to strictly filter the pool U may not
yield the best results. Instead, we use C∗ to influence the active learner’s rankings
of items in the pool, creating a Relevance Bias (RB). Figure 1 outlines pseudo-
code that replaces a normal active learner’s item selection method. In step 4,
the learner combines its ranking of the items with the probability that they are
relevant to yield a final decision about which item to query. In our experiments,
using C∗ as a modifier rather than a filter increased performance by up to 30%.

We trained an SVM for C∗ using the same parameters (kernel function and
regularization parameter) as were used for A. However, any learning method
that outputs a probability can be used. When C∗ is an SVM, P (relevant|x) can
be approximated in several ways, such as clipping values outside the range [−1, 1]
and mapping them to the range [0, 1], or using Platt’s technique of mapping the
SVM outputs to a sigmoid probability model [6]. We used the former method in
this work.

4 Experimental Results

To evaluate the effectiveness of our proposed approach, we conducted exper-
iments on a real-world data set and two benchmark problems. Key data set



Table 1. Summary of the data sets, including the SVM parameters used, the choice
of positive, negative, and irrelevant classes, and number of items in each class. All
experiments used an RBF kernel.

Number of Training set (# items) SVM params
Data set features Positive Negative Irrelevant γ C

MISR 156 cloudy (100) clear (100) dusty (100) 1.0 1.0
DNA 180 EI (50) IE (50) neither (50) 2−6 8.0

MNIST 784 ‘1’ (100) ‘7’ (100) others (800) 1.0 1.0

characteristics, including SVM parameters, are shown in Table 1. The disjoint
test sets are composed solely of relevant items.

MISR. This data set consists of the pixels in an image that was collected by
the Multi-angle Imaging SpectroRadiometer (MISR) instrument in Earth orbit
over the Sahara Desert on February 6, 2004. The goal is to build a classifier
that distinguishes cloudy and clear pixels. This particular image also contains
several dusty pixels, which fall into neither class and are therefore considered
irrelevant. For each pixel, we extracted 156 features: the bidirectional reflectance
factor for the pixel and a subset of the pixels within a 5x5 neighborhood, from
four different spectral bands and from cameras viewing the scenes from three
different angles. We selected 300 pixels randomly from the image to form the
training set, 100 each of the cloudy, clear, and dusty classes.

DNA. This is the dna data set from the StatLog repository [7]. The goal
is to use the DNA sequence on either side of a splice junction to distinguish
between exon/intron boundaries (EI sites, or “donors”) and intron/exon bound-
aries (IE sites, or “acceptors”). Some splice junctions fall into neither category
(irrelevant). Each feature vector consists of 180 features (60 DNA base pairs,
each encoded using three binary features). We ran experiments on 150 exam-
ples chosen randomly from the training set of 2000 examples, using the SVM
hyperparameters as in Hsu and Lin’s one-vs-one experiments [8].

MNIST. This data set consists of scanned images of handwritten digits [9].
Each image is composed of 28x28 pixels. We used a subset of the full data set
that contained 1000 items, 100 from each class (digit). For these experiments,
we focus on learning to distinguish between digits 1 and 7, which is one of the
more difficult cases. The 800 items representing the eight other digits are all
irrelevant items, since they are neither 1’s nor 7’s.

4.1 Active Learning Results

We performed an empirical comparison for all three active learning methods
against random selection and the RB-enhanced versions of each method. In ad-
dition to plotting learning curves, we also compute a scalar value that captures
overall performance, AUC (area under the curve). The AUC of algorithm A af-
ter n rounds is the sum of the accuracy it obtained at each round from 1 to n,



0 50 100 150 200
0.75

0.8

0.85

0.9

0.95

1
MISR Data Set

Round

A
cc

ur
ac

y

RB−Simple
Simple
Random

0 20 40 60 80 100
0.75

0.8

0.85

0.9

0.95

1
DNA Data Set

Round

A
cc

ur
ac

y

RB−Simple
Simple
Random

0 50 100 150 200
0.75

0.8

0.85

0.9

0.95

1
MNIST Data Set

Round

A
cc

ur
ac

y

RB−Simple
Simple
Random

Fig. 2. Active learning (Simple) with and without a Relevance Bias (100 trials).

normalized by n.

AUCn(A) =
1
n

n∑
t=1

Acct(A) (1)

If n is clear, we omit the subscript. In general, a higher AUC indicates faster,
more efficient learning.

Figure 2 shows the behavior of Simple, RB-Simple, and Random on each data
set (the other active learners are omitted from the figures to reduce clutter). The
quantified AUCs observed for all three active learners are shown in Table 2. We
observe several cases where regular active learning performs worse than random
selection. The MaxMin algorithm is particularly sensitive to the presence of
irrelevant items in the MISR and MNIST data sets. Overall, we find that RB-
Diverse yields the best performance.

With the sole exception of Simple’s performance on the MNIST data set,
adding a Relevance Bias to each method improves performance (AUC), some-
times dramatically. To more clearly illustrate this phenomenon, Figure 3 (top)
shows the (cumulative) number of irrelevant items that each algorithm selected.
We can see that Simple has a definite bias towards selecting irrelevant items
(more than expected by random chance). In contrast, RB-Simple chooses far
fewer irrelevant items and correspondingly achieves higher performance.

Because the performance of an RB-enhanced active learner is dependent on
the accuracy of its C∗ classifier, we also examined the C∗ learning curves. Fig-
ure 3 (bottom) shows these curves for Simple, RB-Simple, and Random (evalua-
tion is over a separate set of items not included in U). C∗ quickly achieves a high

Table 2. AUC for three active learners compared to Random, the RB-enhanced ver-
sions, and Multi-class active learning (100 trials). The best result for each data set is
in bold, and results that are significantly worse than Random (95% confidence level)
are italicized.

Simple MaxMin Diverse
Data set # Rounds Random Regular RB Regular RB Regular RB Multi-class

MISR 200 90.6 90.3 91.3 65.5 76.7 90.7 92.0 86.8
DNA 100 79.3 81.7 82.8 78.1 78.8 81.7 82.8 73.5

MNIST 200 87.1 88.0 88.0 54.0 65.0 89.4 90.5 73.2



0 50 100 150 200
0

20

40

60

80

100
MISR

Round

N
um

be
r 

of
 u

nl
ab

el
ab

le
s 

ch
os

en

Simple
Random
RB−Simple

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45
DNA

Round

N
um

be
r 

of
 u

nl
ab

el
ab

le
s 

ch
os

en

Simple
Random
RB−Simple

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180
MNIST

Round

N
um

be
r 

of
 u

nl
ab

el
ab

le
s 

ch
os

en

Simple
Random
RB−Simple

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
MISR

Round

A
cc

ur
ac

y 
of

 th
e 

C
 c

la
ss

ifi
er

RB−Simple

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
DNA

Round

A
cc

ur
ac

y 
of

 th
e 

C
 c

la
ss

ifi
er

RB−Simple

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
MNIST

Round

A
cc

ur
ac

y 
of

 th
e 

C
 c

la
ss

ifi
er

RB−Simple

Fig. 3. Top: Comparison between Simple, Random, and RB-Simple in terms of number
of irrelevant examples queried; lower values are better. Bottom: Learning curves for
RB-Simple’s C∗ (relevance) classifier. All results are averaged over 100 trials.

level of performance on the MISR and DNA data sets. However, C∗ learns more
slowly on the more complex MNIST problem (80% of the data set is irrelevant),
explaining why RB-Simple’s AUC is not an improvement over Simple.

We also tested the multi-class approach (Section 2.2) for each of our data sets.
In each case, we trained a multi-class active learner [10] to discriminate between
the positive, negative, and irrelevant classes. As shown in Table 2, the multi-class
active learner also performs worse (learns more slowly) than Random, because
it aims to simultaneously maximize performance over all three classes and must
therefore devote a large number of queries to the third (irrelevant) class. In
contrast, the Relevance Bias approach can provide performance gains even when
C∗ is not yet fully accurate, because the majority of its effort is devoted to
modeling the two critical classes. This intuition is confirmed experimentally: we
find that RB-Simple strongly outperforms the multi-class learner, by 5–19%.

5 Conclusions and Future Work

Active learning enables the application of machine learning methods to problems
where it is difficult or expensive to acquire expert labels. Real-world data sets
may contain items that are irrelevant to the user’s classification goals. When
filtering these items is not a realistic option, it is essential that active learning
methods be able to cope with the presence of irrelevant items. However, exist-
ing active learning algorithms can perform worse than passive learning in this
situation.



We have proposed a new active learning framework that allows for any item
to be assigned to an “irrelevant” class. We presented a novel method, Relevance
Bias, by which any active learning algorithm can be modified to avoid irrelevant
examples by training a second classifier to distinguish between the relevant and
irrelevant items. This method consistently improves the performance of active
learners when irrelevant items are present. We have also shown that the multi-
class approach does not perform as well as the Relevance Bias approach.

An important extension to this work will be to add a mechanism that com-
pensates for the fact that C∗ cannot perfectly distinguish relevant from irrelevant
items (especially early on). For example, the algorithm could estimate C∗’s accu-
racy via leave-one-out cross-validation and adjust the strength of the relevance
bias over time. Thus, initial rounds will be more exploratory, while later ones
can rely more strongly on C∗’s recommendations.

Acknowledgments. We thank Dennis DeCoste for suggesting the initial idea for
this work and for valuable suggestions and feedback along the way. We also thank
David Diner, Roger Davies, and Michael Garay for working with us on MISR cloud
classification, and Rebecca Castaño and Robert Granat for other valuable feedback.
The research described in this paper was funded by the NASA AIST Program and was
carried out at the Jet Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space Administration.

References

1. Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning.
Machine Learning 15(2) (1994) 201–221

2. Cortes, C., Vapnik, V.: Support-vector network. Machine Learning 20 (1995)
273–297

3. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. Journal of Machine Learning Research 2 (2002) 45–66

4. Brinker, K.: Incorporating diversity in active learning with support vector ma-
chines. In: Proceedings of the Twentieth International Conference on Machine
Learning, Washington, D. C. (2003) 59–66

5. Burl, M.C., DeCoste, D., Enke, B., Mazzoni, D., Merline, W.J., Scharenbroich,
L.: Automated knowledge discovery from simulators. In: Proceedings of the Sixth
SIAM International Conference on Data Mining. (2006)

6. Platt, J.C.: Probabilities for SV Machines. In Smola, A.J., Bartlett, P., Schölkopf,
B., Schuurmans, D., eds.: Advances in Large Margin Classifiers, MIT Press (1999)
61–74

7. Michie, D., Spiegelhalter, D., Taylor, C.: Machine Learning, Neural and Statisti-
cal Classification. Prentice Hall, Englewood Cliffs, N.J. (1994) Data available at
http://www.liacc.up.pt/ML/statlog/.

8. Hsu, C., Lin, C.: A comparison of methods for multi-class support vector machines.
IEEE Transactions on Neural Networks 13 (2002) 415–425

9. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11) (1998) 2278–2324

10. Tong, S.: Active Learning: Theory and Applications. PhD thesis, Stanford Uni-
versity (2001)


